Effects of Size and Surface Charge of Polymeric Nanoparticles on in Vitro and in Vivo Applications

نویسندگان

  • Sams M. A. Sadat
  • Sheikh Tasnim Jahan
  • Azita Haddadi
چکیده

Biodegradable polymeric materials are the most common carriers for use in drug delivery systems. With this trend, newer drug delivery systems using targeted and controlled release polymeric nanoparticles (NPs) are being developed to manipulate their navigation in complex in vivo environment. However, a clear understanding of the interactions between biological systems and these nanoparticulates is still unexplored. Different studies have been performed to correlate the physicochemical properties of polymeric NPs with the biological responses. Size and surface charge are the two fundamental physicochemical properties that provide a key direction to design an effective NP formulation. In this critical review, our goal is to provide a brief overview on the influences of size and surface charge of different polymeric NPs in vitro and to highlight the challenges involved with in vivo trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palladium nanoparticles synthesis using polymeric matrix: poly(ethyleneglycol) molecular weight and palladium concentration effects

Due to unique applications of palladium nanoparticles, synthesis of these nanoparticles by a simple and low cost method is very important. In this work, Pd nanoparticles were synthesized with narrow size distribution by loading metal salt (Pd(OAc)2 ) into the polymeric matrix (PEG) as reducing agent and stabilizer. Also, the effect of metal salt concentration and PEG molecular weight on the con...

متن کامل

In-Vitro Assessment of Magnetic Dextran-Spermine Nanoparticles for Capecitabine Delivery to Cancerous Cells

Cationic polymeric nanoparticles have great potential for developing drug delivery systemswith limited side effects for tumor medication. The goal of this research is investigation ofcationic dextran-spermine polymer (DS) efficacy for improvement of hydrophilic drug deliveryto negatively charged cancerous cells. Capecitabine (as a hydrophilic antineoplastic drug) wasloaded into the magnetic dex...

متن کامل

In-Vitro Assessment of Magnetic Dextran-Spermine Nanoparticles for Capecitabine Delivery to Cancerous Cells

Cationic polymeric nanoparticles have great potential for developing drug delivery systemswith limited side effects for tumor medication. The goal of this research is investigation ofcationic dextran-spermine polymer (DS) efficacy for improvement of hydrophilic drug deliveryto negatively charged cancerous cells. Capecitabine (as a hydrophilic antineoplastic drug) wasloaded into the magnetic dex...

متن کامل

Applications of Nanoparticles in the Treatment of Viral Infections and Toxicological Considerations

Viral infections can cause of death in humans worldwide, despite the tremendous  progress in human medicine. Particle size is a very important physical characteristic that can affect bioavailability and circulation time of nanoparticles. The ratio of large surface area and volume of nanoparticle enhanced solubility of poorly soluble drug compounds, optimum surface charge of the nanoparticle wi...

متن کامل

Exemestane loaded polymeric nanoparticles for oral delivery

The aim of the present study was to develop Exemestane loaded polymeric nanoparticles for improved oral bioavailability of Exemestane. Exemestane loaded nanoparticles were prepared by solvent displacement method with Eudragit RL 100 and Eudragit L 100 as polymers and Pluronic® F-68 as surfactant. The influence of various formulation factors (drug: polymer ratio and concentration of surfactant) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016